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Abstract--This paper presents a theoretical-numerical analysis of longitudinal and annular fins and spines. 
We examine rectangular, triangular and parabolic profiles for the fins and cylindrical, conical and parabolic 
spines. In order to reach an understanding of the performance of these odd-shaped, but real world fins, 
the situation examined here is the case of fins subject to a temperature-dependent heat transfer coefficient. 
Figures as well as numerical correlations of performance and optimum dimensions of these fins are 

presented. 

IINTRODUCTION 

Fins are a widely used device in the augmentation of 
heat transfer and play an important role in thermal 
systems design. Therefore, optimized fins have long 
been the desire of the designer. 'Real world' analysis 
can be very complex. Many investigators have 
adopted and analyzed fins using the idealizing 
assumptions that are attributed to Murray [1] and 
Gardner [2] : 

(1) the heat flow and temperature distribution 
throughout the fin are independent of time, i.e. the 
heat flow is steady ; 

(2) the fin material is homogeneous and isotropic; 
(3) there are no heat sources in the fin itself; 
(4) the heat flow to or from the fin surface at any 

point is directly proportional to the temperature 
difference between the surface at that point and the 
surrounding fluid ; 

(5) the thermal conductivity of the fin is constant ; 
(6) the heat-transfer coefficient is the same all over 

the fin surface ; 
(7) the temperature of the surrounding fluid is uni- 

form; 
(8) the temperature of the base of the fin is uni- 

form ; 
(9) the fin thickness is so small compared to its 

height that temperature gradients normal to the sur- 
face may be neglected ; 

(10) the heat transfer through the outermost edge 
of the fin is negligible compared to that which passes 
through the sides. 

Hung and Appl [3], Aziz [4] and Jang and Bejan 
[5] assumed the thermal conductivity to be linearly 

t Author to whom correspondence should be addressed. 

dependent on the temperature excess of the fin sur- 
faces over the surroundings. Brown [6], Irey [7], Lau 
and Tan [8], Laor and Kalman [9], Laor [35], Maday 
[10] and f2nal [11] considered also the heat dissipation 
from the fin tip and the heat transfer coefficient was 
assumed to be constant over the fin surface, or tem- 
perature dependent [10, 11]. Irey [7], Levitsky [12] 
and Lau and Tan [8] examined the criterion and errors 
due to one-dimensional heat transfer analysis and con- 
cluded that the fin base thickness Biot number should 
be much smaller than unity. Snider and Kraus [13] 
confirmed this conclusion by taking into account the 
tapered fin effect. 

Ghai and Jakob [14] and Ghai [15] experimentally 
demonstrated that heat transfer coefficients attained 
significantly greater values at the fin tip rather than at 
the fin base and concluded that the idealization of 
a uniform heat transfer coefficient is not necessarily 
realistic. Since then, papers analyzing the coordinate 
dependent heat convection fins have been published 
and many of these reports have been reviewed by 
Huang and Shah [16]. Razelos and Imre [17, 18] 
assumed that the heat transfer coefficient varies 
according to a power law of the distance from the 
base. They found the optimum dimensions of circular 
and longitudinal fins but not those of spines. Their 
approach may result in exact solutions for measured 
local heat transfer coefficients, but cannot be applied 
to a design of finned systems. In any case, the known 
heat convection mechanism is mostly temperature 
dependent. Obviously, each mechanism for any kind 
of fin eventually results in a heat transfer coefficient 
that is location dependent. 

In certain applications, the heat loss may vary with 
the local temperature in a nonlinear manner. In par- 
ticular, the cooling process may be governed by a 
power law-type temperature dependence. Under these 
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NOMENCLATURE 

a heat convection definition, equation 
(2) 

An cross-section area, normal to the heat 
flow direction [m 2] 

B, C, D, E, J, U variables which distinguish 
between different fins, Table 2 

Bit Biot number based on length, 2hos/k 
F shape factor 
g gravitational acceleration [m s -z] 
G volume integration, equation (9) 
Gr Grashof number, g~(T-T~)s3/v 2 
h heat transfer coefficient [W m -2 °C 1] 
H~, H2, K,/£2 correlation parameters, 

equations (11)-(13), Table 3 
k thermal conductivity [W m ~ °C i] 
L sharp ended fin length [m] 
Lf cut fin length [m] 
M fin mass [kg] 
m power of convection coefficient 
mf fin parameter, Lx/(2ho)/(k 6o) 
n constant for fin shape definition (0, 1 

or 2) 
P fin perimeter [m] or pressure [N m 2] 
Pr Prandtl number, v/c~ 
q heat rate, [W] 
q/A heat flux [W m 2] 
R0 annular fin base radius [m] 

s characterizing length [m] 
S active surface area of the fin [m 2] 
T temperature [°C] 
T~ temperature of surroundings [°C] 
x distance from the fin base [m] 
Z longitudinal fin width [m]. 

Greek letters 
c~ thermal diffusivity [m 2 s-l]  
fl volumetric coefficient of expansion 

[K-1] 
6 fin thickness [m] 

emissivity 
t/ fin efficiency 
0 temperature excess of fin over 

surroundings [°C] 
v kinematic viscosity [m 2 s-1] 
p material's density [kg m -3] 
cr Stefan Boltzmann constant, 

5.669" 10 -8 [W m -2 K -4] 
q5 normalized temperature = 0/00. 

Subscripts 
0 fin base 
f film temperature. 

circumstances, the differential equation for tem- 
perature becomes strictly nonlinear [19]. Unal [20] 
analyzed one-dimensional longitudinal fins having a 
rectangular profile, assuming that the heat transfer 
coefficient is a power function of the difference 
between the temperature of the fin and that of the 
ambient fluids. Sen and Trinh [19] further derived the 
rate of heat dissipation for the same fin. 

For longitudinal fins, the optimization problem has 
been solved by Schmidt [21] and confirmed by Duffin 
[22] and Duffin and McLain [23]. In order to find the 
fin profile they assumed that the minimum weight fin 
has a linear temperature distribution along its length. 
This approach has been adopted by Cobble [24], 
Maday [10] and Jang and Bejan [5] for straight fins 
and by Guceri and Maday [25] and Mikk [26] for 
annular fins, with and without assuming the length of 
arc. The resulting fin shapes are complex and have 
little practical use, mainly due to manufacturing prob- 
lems. Kern and Kraus [32] used a different approach 
in which they calculated the optimum dimensions 
for known shapes of different types of fins. The 
same approach was used by Brown [6], Ullmann and 
Kalman [27] and Kalman and Tavi [28] for annular 
fins. 

Cobble [21] derived the optimum dimensions of a 

straight fin that exchanges heat with the surroundings 
by a constant convection coefficient and radiation. 
Cash et al. [29] examined the optimum fin for boiling 
heat transfer. There are no publications regarding 
optimization of fins with a temperature dependent 
heat transfer coefficient nor for variable fin shapes. 
Optimization of such fins is of great importance for 
understanding optimum fins with known mechanisms 
of heat exchange with the surroundings. 

In this study, longitudinal, spine and annular fins 
each with rectangular, triangular and parabolic 
shapes, governed by power law-type temperature 
dependence of the heat transfer coefficient, have been 
examined. The governing equation was solved 
numerically by a recognized technique [9], [27], [28], 
[30] and [35]. The efficiency, optimum dimensions and 
performance have been shown graphically to correlate 
to simple equations that achieve quick and accurate 
design. Although practical application involves other 
effects such as temperature dependency of thermal 
conductivity of fin material, two-dimensional heat 
flow, and so on, only the heat transfer coefficient effect 
is considered. This is in order to reach an effective 
presentation of the results. However, we take into 
account structural considerations that have been stud- 
ied elsewhere [9, 28 and 35]. 
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TEMPERATURE DISTRIBUTION 

The convection ll~eat transfer coefficient, h, is usually 
assumed to be constant for the analysis of cooling 
fins, but, in reality, it is temperature or location depen- 
dent. In either lami:aar or turbulent forced convection, 
the heat transfer coefficient is a function of location. 
For plates (longitudinal fins), the local heat transfer 
coefficient depends on the location along the flow 
path. For cylinders (spines), the local heat transfer 
coefficient depends on the location on the periphery. 
In this study, the heat balance will be defined as one- 
dimensional and as a function of the axis along the 
heat conduction flow which is perpendicular to the 
axis of the local heat transfer coefficient variation. 
Therefore, we cover forced convection by applying the 
average heat trans:rer coefficient, assuming negligible 
heat conduction within the fin perpendicular to the 
main conduction direction along the fin. In free con- 
vection, the local heat transfer coefficient is location 
and temperature dependent. 

For fins used in free convection, the location depen- 
dence is in the gravity direction which is usually per- 
pendicular to the main heat conductivity flow along 
the fin. As for forced convection, this location-depen- 
dency is averaged and only the temperature-depen- 
dency is maintained. The averaged Nusselt number 
can be represented in the following functional form 
for a variety of isothermal circumstances [33]: 

horizontal cylinders (spines) at laminar free con- 
vection is diameter dependent (Table 1). The diameter 
is decreasing along the conical and parabolic spines. 
This significantly affects the heat transfer coefficient. 
In this study, only temperature dependent heat trans- 
fer coefficients are considered, therefore the following 
analyses and figures are not relevant for such cases. 

Heat balance on a differential length of any type of 
fin (longitudinal, spine or annular) with any shape 
(rectangular, triangular or parabolic) is shown in Fig. 
1. Using the same approach as that shown previously 
by Kalman and co-workers (including the length of 
arc), yields 

d 1 1l '/2 ( T -  T~) = 0, ] 

(4) 

where x starts at the fin base and is normal to it, P 
and A, are the fin perimeter and the fin area normal 
to the heat flow, respectively, at distance x from the 
fin base. 

Introducing the definitions of P and A, from Table 
2 and their derivatives, the non-dimensional variables 
are .4 = A°/A,o, 3 = 6/60, .~ = x/L, c~ = (T-- T~)/ 
(T0--To~). Inserting equation (3) into equation (4) 
results in a general second-order differential equation 

57uf = c( Gr f PrO", (1) 

where the subscriw~findicates that the properties are 
evaluated at the film temperature. It is clear from 
equation (1) that the heat transfer coefficient is only 
temperature dependent, and can be written as follows : 

h = aO ~. (2) 

Equation (2) is suitable for heat transfer coefficients 
in free convection from isothermal surfaces as well as 
free convection from constant heat flux surfaces. It is 
also suitable for foiced convection by applying m = 0. 
Equation (2) is also suitable for boiling from different 
surfaces and space radiation (zero ambient tem- 
perature). Considering the heat transfer coefficient at 
the base temperature, h0 = aO'~, equation (2) is rede- 
fined 

h = ho4,", (3) 

where values of h0 and m from simplified equations 
[33] are shown in Table 1, for free convection to air, 
boiling to water, and radiation. For free convection 
m = 1/3 or 1/4, fo:r radiation m = 3 and for boiling 
m = 1/7, 1/3, 2 or 3. For a constant heat transfer 
coefficient, m = 0, can be used. Although different 
cases have the same m power, they differ by the value 
of h0. All the cases described in Table 1 can be treated 
with m = 1/7, 1/4, ]./3, 2 and 3, while h0 remains a free 
parameter. Notice that the heat transfer coefficient for 

d2d? B ~ _  C m ~  
d.~ 2 (1 __.~)n 

2 - 2 n - - 2  2 I /2  Fn ( l - x )  (60\ . ]  (~)m+ 1 

x L- +'J --o, (5) 

where the fin parameter m f  = Lx/(2ho)/(k 6o), L is the 
fin length and the three shapes are defined by a single 
equation 

6 
3 -- ~- = (1 - 2)", (6) 

o0 

where n represents the fin shape. Although n may be 
a real number defining complicated shapes, only three 
values for n (n = 0 for rectangular fins, n = 1 for tri- 
angular fins and n = 2 for parabolic fins) are con- 
sidered in this paper. Nevertheless, performance of fin 
shapes represented by n values between 0 and 2 can 
be estimated from the following figures. Parameters B 
and C are defined separately for each type of fin in 
Table 2, and 60 is the fin thickness at the base. Equa- 
tion (5) is suitable for heat transfer coefficients defined 
in equation (2). Problems involving mixed mech- 
anisms such as free with forced convection, convection 
with radiation and forced convection with boiling, can 
be solved by the same procedure, only parameter C is a 
temperature function [31, 34]. Combined mechanisms 
are beyond the scope of this study mainly because 
they present too many possibilities. 
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Table 1. Values of h0 and m for different heat transfer mechanisms (Holman [33]) 

Mechanism Condition h0 m 

Free convection Vertical plate or cylinder 

/0  \1/4 
laminar 104 < GrPr < 109 1 . 4 2 ( ~  1/4 

turbulent GrPr > 109 1.3]0~ 43 1/3 

Horizontal cylinder 

/ 0  \1/4 
laminar 104< GrPr < 109 1.32/7 ) 1/4 

1.2400 t/3 1/3 turbulent GrPr > 109 

Hor&ontal plate--various 

conditions 

Fully developed boiling 0.2 < P < 0.7 MPa 

0 . 7 < P <  14MPa 

Horizontal plate 

q/A < 16 

16 < q/A < 240 

Vertical plate 

q/A < 3 

3 < q/A < 63 

Radiation T~o = 0 

1.32(~) TM 1/4 

1.52001/3 1/3 

0.59(~) TM 1/4 

2.25303 3 

283.2p4/30o z 2 

104200 I/3 1/3 

5.560o 3 3 

5370~/7 1/7 

7.96003 3 

aeFOo3 3 

The second-order differential equation (5) is solved 
by using two boundary  conditions 

q~=0 = 1 

d__~d£ ~ = Cr = --BiLq~m+l' (7) 

where BiL = hoL/k, and/St is the normalized distance 
of the fin tip from its base./St can have values between 
0 and 1, while/St = 1 represents sharp ended triangular 
and parabolic fins and any other value represents cut 
fins. Although the effect of  cutting sharp ended fins is 
not analyzed in this study (it has been previously 
studied by Kalman  and Tavi [28] for annular  fins with 
a constant heat transfer coefficient) it was kept in the 
equations in order to maintain generality. The second 
boundary  condit ion represents heat dissipation from 
the fin tip [9, 35] and can be altered by insulation, 
hence d~b/d~ = 0 at g = Er. 

Considering ~z as the only independent variable and 
keeping the other variables constant, equation (5) is 
solved numerically for all cases. A known technique 
for solving a two-point boundary value problem was 
used. It assumes first d~b/d~ at ~z = 0 and then it checks 
if the second boundary  condit ion is satisfied ; if not, 
the assumption is corrected and the procedure is 
repeated. 

Figure 2 presents the temperature distribution of 
the constant  thickness longitudinal fin with an insu- 
lated tip for two values of the fin parameter and for 
four convection mechanisms. The numerical solutions 
show higher temperatures along the fin for higher 
values of m. This phenomenon can be misunderstood 
if one assumes that m is the only parameter defining 
the heat transfer mechanism. The convection mech- 
anism is governed also by h0 and furthermore, it also 
affects mr. 

The numerical solution is confirmed by the ana- 
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Longitudinol 

Spine 

Annular 

Fig. 1. Control volume for heat balance. 

lytical solution of Sen and Trinh [17] for mf ----- 1. It is 
clear from Fig. 2 that the temperature decrease is 
more moderate for higher values of the convection 
coefficient's power m. The slope of the temperature 
profile is steeper as m decreases, thus more heat is 
dissipated by the fin. 

FIN E F F I C I E N C Y  

Fin  efficiency is defined as the ratio between the 
heat removed by the fin and the heat that would have 

1.0 k ~ , ~  S e n  o n d  Trinh O m=0,mf=l 
~ , " , , , .  ~ ' ~ . : . : .  0 m = ~ , m f = J .  

0 .6  ~ - " ' - - - .  

" ""- ' - - - - - -5U_-- - - -  
0.4 LongitudiaoI fin~ ~. ~ 7  

So/-L=0.Ln=0 ~ . .  - ~ m f = 3  
0.2 m=O " 

- - -  

- - - - -  m=~ 
0 , " 7 " . - ' 5  mr=31 = I , , i I . , , I , . , 

0 0.2 0.4 0.6 0.8 1.0 

X/L  
Fig. 2. Temperature distribution of constant thickness longi- 
tudinal fin of tip insulated for four convection mechanisms. 

been removed if the entire surface area of the fin had 
been maintained at the base temperature. 

rl = qr/qfo. (8) 

By knowing the temperature profile from the solu- 
tion of equation (5) and by applying Fourier 's  law at 
the fin base, the amount  of heat that enters the fin and 
is transferred to the environment  can be calculated, as 

kA ,oOo  d(a • = o" 
qf - L d$ (9) 

If  the surface temperature of the fin is constant  
at the base temperature, calculating the heat that is 
dissipated from the fin is reduced to the calculation of 
the surface area by applying Newton's  law of con- 
vection 

qf0 = hSOo,  (10) 

where the surface area, S is 

Table 2. Parameters expressions 

Fin Longitudinal Spine Annular 

[' 2(Z+6) 

A. (1 -~)" 

n 
B 

1-:~ 

C 1 + ( 1 - . £ ) " ~  

D 1 + (1 --~)" ~- 

E (1 --/Sf)" 

J 1 

U 0 

di 4n (R0 + x) 

(1 --.2) 2" (1 + ~o)(1 --.£) 

n n 1 
21_.£ 1--~ Ro--~ 

2 1 

X" 
20 -~)" 1+ R~ 

, 

2 1 

1 
0 

Ro 
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tz, ~ .  ]-1 t/d 3~2/ '6o~: G 

tW Jo I 

Introducing the derivative of equation (6) into 
equation (11), substituting the perimeter and base 
area from Table 2 into equations (9) and (11), and 
then introducing equations (9)-(11) into the efficiency 
definition (8) yields the following expression of fin 
efficiency : 

r / =  
1 o 

1 f6o\ 
E 

(12) 

The second term of the denominator (due to the tip 
boundary condition) vanishes for the insulated tip 
(E = 0). For convicting tips, D and E are defined 
separately for each fin type in Table 2. 

The integral solution for any fin is important for 
calculating the heat flux based on fin efficiency. The 
integral solution can be found in mathematical hand- 
books or can be solved numerically for more complex 
cases. It follows from equation (12) that the tem- 
perature distribution or, at least, the first derivative 
of the temperature at the fin base, enables fin efficiency 
to be defined for known shapes. Notice, however, that 
for any kind of rectangular fin, the efficiency and 
temperature profile do not depend on falL. 

The equations for temperature distribution as well 
as for the efficiency derived in this study are general, 
and therefore valid for the three most common types 
of fins (longitudinal, spine and annular) and for the 
three most common cross-section shapes (rectangular, 
triangular and parabolic). The sharp ended fins--tri- 
angular and parabolic---can be cut at any length from 
the fin base by assigning/~r values between 0 and 1 
( for safety). The slope of the fin surface is determined 
by 6o and L, but the real end of the fin is determined 
by Lf. 

The numerical results of fin efficiency for the three 
fin shapes of idealized (m = 0) longitudinal fins and 
spines against the fin parameter, mf are shown in Fig. 
3. The numerical solutions of annular fins are pre- 
sented elsewhere [28]. Figure 3 is identical to the ana- 
lytical solutions of Gardner [2] and Kern and Kraus 
[32]. Fin efficiency is obviously at its maximum when 
fin length is zero. As the fin parameter increases, fin 
efficiency decreases, first slightly (for mf < 0.2), then 
sharply, and stabilizes at large fin parameters. 6alL 
influences fin efficiency no more than does the line 
thickness on Fig. 3 for values from 0.01 to 0.5, which 
on further examination leads to the conclusion that 
6o/L has little effect on efficiency. Nevertheless the 

1.0 I 

~-- o~  

C) 
Z 

LL 
u_ 04 LU 

Z 

u_ 0.2 

'x \ \  
NX\  \ 

ideal fin 
Longitudinal Fin 
Spine 
0.01 < 6 o / L  < O5 
6 o / Z = O  

o ~  

! 

0 I I I I  [ l l f J t l l t  l i l t  l i l t  

0 I 2 5 4 5 

FIN PARAMETER,mr =L. [ (2h) / (k6 o) 

Fig. 3. The efficiency of ideal longitudinal fins and spines 
(m = 0 and insulated tip). 

exact value used for calculations is indicated in the 
following figures even though the solution can be 
extrapolated to any practical value. 

The difference between the efficiency of various 
shapes is greater for spines represented in Fig. 3, due to 
several reasons. The absolute value of the temperature 
gradient at the base [the numerator in equation (12)] 
as well as the surface area [the denominator in equa- 
tion (12)] of both longitudinal fins and spines increases 
with increasing shape parameter, n. For a large width, 
Z, of the longitudinal fin, the increase of the surface 
area is much less than that of spines. This means that 
the shape parameter has less effect on the efficiency 
of longitudinal fins than it does on the efficiency of 
spines. 

Fin efficiency against fin parameter are plotted for 
longitudinal fins, spines and annular fins with tem- 
perature dependent heat transfer coefficients in Figs. 
4-6, respectively. The general behavior of fin efficiency 
is much the same for each type of fin, shape or heat 
convection power. Nevertheless, efficiency is higher 
for each defined fin parameter as heat convection 
power decreases; thus, more heat is dissipated from 
the base to the surroundings. These figures enable the 
designer to calculate heat dissipation. The behavior 
for m = 1/7 is not shown, but it obviously lies between 
the solutions ofm = 0 and m = 1/4, and can be esti- 
mated from them. 

FIN O P T I M I Z A T I O N  

Fin optimizations can be achieved in either one of 
two ways: by maximizing the heat dissipation from 
the fin for any constant mass or volume, or by min- 
imizing the volume for any given heat dissipation. In 
this paper the first method is used. 

The heat dissipation from the fin surface to the 
surroundings can be found by applying the tem- 
perature distribution, q~(x) in equation (5), into Fou- 
rier's law of heat conduction. Assuming constant den- 
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sity of  the fin mate, rial, the mass of the fin is obtained 
by its volume 

Io' M = p V =  p" A .  d x  = p A . o L ' G ,  (13) 

where A.o is the fin base area and G represents the 
result of  the above,, integration 

J'" ~ ( 1 - ~ ) '  , 
G = ,~o ~ ' n ~ l  [ I +  (/+ l)x Ul n + 2  J (14) 

where d and U are defined in Table 2 for each type of 
fin. 

Using Fourier's law and equation (5), the heat per 
mass is defined as 

q _ k ( T o - T ~ )  1 1 d~bx=0. (15) 
M p L 2 G dx 

The heat per mass is plotted in Fig. 7 vs L for 
longitudinal fins with constant heat transfer coefficient 
and insulated tip, as an example of the optimization 
procedure. It is essential to keep this preliminary figure 
in its dimensional form in order to emphasize the 
physical behavior and optimization procedure. Some- 
times, normalization in the early stages of the study 
can be misleading and basic phenomena overlooked. 
Obviously, from Fig. 7, there is a maximum value 
of heat dissipation per mass for any fin volume and 
condition. Similar figures can be shown for spines and 
annular fins [28]. The dimensions of the different fins 
in which this maximum occurs are attributed to the 
optimum fin. By examining this figure, it can be con- 
cluded that for larger volumes (mass) the optimum 
fin is longer and dissipates more heat, although the 
heat dissipation per mass is lower. 

The lines that describe the optimum dimensions and 
heat per mass can be found by an accumulation of the 
maximum values for slight and continuous increase 
of the volume. Let heat dissipation be normalized 
by hb2(To - To) and fin mass by pb 3, where b is a 
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Fig. 8. The optimized heat dissipation per mass and dimen- 
sions for longitudinal fins with constant heat transfer 

coefficient and insulated tip. 
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Fig. 7. Heat dissipation per mass of longitudinal fin and 
constant heat transfer coefficient (m = 0 and insulated tip). 

characteristic length of  the base. Then the dimen- 
sionless heat dissipation per mass is defined as fol- 
lows : 

q 1 b 1 d~ (16) 
fill BiL L G d.~ 

By using b = R0 for annular fins it has been shown 
[28] that (q/ffl)'BiRo and (fio/L)/BiRo vs L/Ro, using 
logarithmic scales, appear to be linear. This enables 
the development of  a single correlation for the opti- 
mized fin heat per mass and dimensions 

K, (_L)-,. ~o ,,z,'~-, 
M BiRo\Z} ' L = KzBiR°~2) " (17) 

By applying b = Z for longitudinal fins with m = 0, 
the same phenomena can be seen in Fig. 8, although 
this figure is plotted for a unit length width, namely 
Z = 1 m. Therefore, for longitudinal fins also, a single 
correlation can describe the optimized fin heat per 
mass and dimensions 

o K,(L'~', ~o //.','~ 
2£1 - B i z \ Z }  ~ = K 2 B i z k ~ )  . (18) 

For  spines, the only base length is 6o which is not a 
free parameter as is R0 for annular fins or  unit width 
for longitudinal fins. Therefore, normalization of  the 
length is impossible, but if one is forced ( for  uni- 
formity) to use equation (16) for b = 6 o  then 
(q/h71) .(Bi,~o/62) and (6o/L) "(6otBi~ o) are plotted vs L 
in Fig. 9 to reach the same linearity and uniqueness 

of  the two previous fins. It should be noted, however, 
that Fig. 9 is not  dimensionless, but single correlations 
can be defined 

q KI 62 L ~'~ 6o Bi,~o LH 2 
= Bi~o ~ = K2 6~o " (19) 

Opt imum dimensions, as well as normalized heat 
per mass of  constant thickness fins with variable heat 

,oo~o [ \ . . .  sP,.E ,o 
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Fig. 9. The optimized heat dissipation per mass and dimen- 
sions for spines with constant heat transfer coefficient and 

insulated tip. 
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transfer coefficients, are shown in Figs. 10-12 for 
longitudinal, spine and annular fins, respectively. As 
fin length increases, normalized heat per mass 
decreases and base thickness increases. It is also obvi- 
ous from these figures that normalized heat per mass 
increases for any fin length as the convection power, 
m, decreases. The wdues of correlation parameters HI, 
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• - - - - m .  , , 3  " I ~  o "~ " 101 '~  
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1~ 3 . . . . . . . .  ~ . . . . . .  10-1 

0.1 1.0 i 0  

L/R o 
Fig. 12. Optimum behavior of constant thickness annular 

fins. 

K1,//2 and K2 are presented in Table 3 for constant 
thickness (as in Figs. 10-12) as well as for triangular 
and parabolic shapes for the three types of fins. 
An analytic solution for the optimized dimensions of 
ideal longitudinal fins can be found in Kern and Kraus 
[32]. Their parameter values are listed in Table 3 and 
are reasonably close to the numeric values of this 
study. 

Using the correlations (17)-(19) enables the 
designer to consider 'real' optimum fins from any 
point of view. The simplest example would be a prob- 
lem in which the length, L, is given. In this case the 
base thickness, 30, as well as the heat dissipation can 
be easily calculated for each fin type, shape, material 
and convection mechanism. Otherwise, trial and error 
should be used in order to calculate the same 
parameters. In any case, the fin shape, material and 
convection mechanism can be varied in order to 
choose the best ones, taking into account material, 
manufacturing and other costs. 

CONCLUSIONS 

In this study we defined unique equations for tem- 
perature distribution, efficiency, optimum dimensions 
and heat per mass. The uniqueness of these equations 
is their generality and applicability to three types of 
fins with three possible shapes. The equations in this 
study have been solved numerically by a method that 
was confirmed by comparison of ideal fin solutions to 
known analytical solutions. 

The method presented in this paper made it possible 
to analyze the effect of the temperature dependent heat 
convection coefficient on performance and optimum 
dimensions. Longitudinal fins, spines and annular fins 
with rectangular, triangular and parabolic shapes, 
subject to various heat transfer coefficients cor- 
responding to free convection, boiling and radiation 
were analyzed. The efficiency of each fin was presented 
graphically. The optimum fin performance as well 
as the dimensions were also presented graphically 
for some cases, and by simple correlations for all 
cases. 

The variety of cases leading to 'real fins' are too 
wide to include in a general survey. Nevertheless, the 
same procedure can be applied to any location-depen- 
dent heat transfer coefficient as well as to mixed mech- 
anisms and other effects. Mixed mechanism problems 
can be estimated by superposition of each separate 
mechanism. Adding, for example, the heat dissipation 
(calculated by efficiency) of one mechanism to the 
heat dissipation of another, would probably be more 
accurate than using available solutions for constant 
heat transfer coefficients. The ability to consider 
location and temperature dependent heat transfer 
coefficients for single fins would lead to further theor- 
etical analysis and optimization of both fin arrays and 
fin surface compact heat exchangers. In these cases the 
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Table 3. Correlation parameters 

Fin m HI K~ 1-12 Kz 

Longitudinal Ideal fin -2 .000 1.292 1.000 0.973 
n = 0 [32] 1.000 0.990 

0 - 2.006 1.255 1.012 1.027 
1/4 -2.008 1.100 1.014 1.149 
1/3 -2.009 1.055 1.016 1.192 
2 - 2.022 0.563 1.040 2.211 
3 - 2.026 0.435 1.047 2.883 

Longitudinal 
n = l  

Longitudinal 
n = 2  

Spine 
n = 0  

Spine 
n = 1 

Spine 
n = 2  

Annular 
n = 0  

Annular 
n = l  

Annular 
n = 2  

[32] 1.000 1.170 
0 - 1.999 2.090 1.000 1.144 

1/4 -2 .000 1.868 1.000 1.246 
1/3 -2 .000 1.805 1.001 1.282 
2 -2 .000 1.052 1.001 2.052 
3 -2.001 0.835 1.002 2.546 

[32] 1.000 1.000 
0 -2 .000 3.053 1.000 0.994 

1/4 -2 .000 2.746 1.000 1.079 
1/3 - 2.000 2.649 1.001 1.111 
2 -2 .000 1.566 1.001 1.766 
3 -2 .000 1.252 1.001 2.177 

Ideal fin -2 .000 0.683 1.000 4.640 
0 -2 .036 0.592 1.054 5.742 

1/4 - 2.044 0.484 1.065 7.085 
1/3 -2 .047 0.455 1.069 7.575 
2 - 2.049 0.220 1.075 15.852 
3 - 1.967 0.245 1.000 14.067 

0 -2 .000 2.420 1.000 1.934 
1/4 -2 .002 2.060 1.003 2.257 
1/3 -2 .002 1.968 1.002 2.358 
2 -2.005 1.002 1.007 4.566 
3 -2.009 0.765 1.012 5.982 

0 - 2.055 0.038 1.014 1.032 
2 -2.003 0.022 1.004 2.268 
3 -2.005 0.017 1.007 2.946 

Ideal fin -2.299 0.940 1.263 1.250 
0 -2.169 0.958 1.136 1.350 

1/4 - 2.336 0.855 1.350 1.349 
1/3 -2 .336 0.825 1.360 1.360 
2 -2 .350 0.462 1.410 2.249 
3 -2.349 0.362 1.410 2.858 

0 - 2.089 0.014 1.116 19.943 
1/4 -2.088 0.012 1.114 21.483 
1/3 -2.088 0.012 1.113 22.017 
2 -2 .000 1.096 1.001 2.063 
3 -2.001 0.873 1.002 2.552 

0 - 2.093 0.020 1.149 19.977 
1/4 -2.089 0.018 1.143 21.111 
1/3 -2 .089 0.017 1.142 21.580 
2 -2.081 0.011 1.126 32.036 
3 -2.081 0.009 1.125 39.140 
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heat  t ransfer  coefficient depends also on  the distance 
between fins. 
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